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Basin size evolution between dissipative and conservative limits
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Recent methods for stabilizing systems like, e.g., loss-modulatedl&@rs, involve inducing controlled
monostability via slow parameter modulations. However, such stabilization methods presuppose detailed
knowledge of the structure and size of basins of attraction. In this Brief Report, we numerically investigate
basin size evolution when parameters are varied between dissipative and conservative limits. Basin volumes
shrink fast as the conservative limit is approached, being well approximated by Gaussian profiles, indepen-
dently of the period. Basin shrinkage and vanishing is due to the absence of bounded motions in the Hamil-
tonian limit. In addition, we find basin volume to remain essentially constant along a peculiar parameter path
along which it is possible to recover the dissipation rate solely from metric properties of self-similar structures
in phase-space.
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A characteristic feature of nonlinear systems is that theychaos only on relatively limited domains of the parameter
often exhibit more than one dynamic equilibrium state forspaceg[13,14]. The subtleties of the passage between conser-
the same value of model parameters. Some states may Rftive and dissipative limits have been discussés). Expo-
chaotic while others are regulgperiodiq. The coexistence pential decay of basin size evolution was found recently for
of several dynamic equilibrium statéattractor$ was ob- the Hénon mayp16], along the characteristic path in param-

served quite early ilQ-switched CQ lasers and calleden- :
. : . . eter space where strange attractors disapieaf.g.
eralized multistabilityf 1]. Several recent studies have shown P 9 & 8

multistability to be a property that may be profitably ex-

ploited in a variety of ways in lasers and other systems. For 15 , —
instance, multistability may be induced or suppressed by il =

weak periodic perturbationg®—4], it is possible to control o 7&
and limit the emergence of multistabilifs—7], the phenom- b of a U]
enon of noise-induced preference of attractors as well as the osl 1 >SS L]
detection of multiple stable states and attractor hopping was ! 3 \\ ]
also investigatedi8]. Underlying all these widespread stabi- ! . : . ]
lization procedures is a need for detailed knowledge of the 1450 15 3 as
structure and extension of basins of attraction in phase-space. a

For instance, a riddled phase-space severely restricts any 0.35 +—

possibility of stabilization and is prone to catastrophic bifur-
cations from riddled to fractal basif8]. This restriction is
particularly severe in coupled systefii®,11].

Here we report an investigation of basin size evolution b
when parameters are varied between dissipative and conser-
vative limits. The model investigated is the standard example
in the field [3,7,10,12, the Hénon map(x,y)— (a—x? ?
+by,x), which affords ease of computation and clarity of '0'451.0 a 2.3
presentation apart from well-modeling G@sers in the limit
of strong dissipatiof12]. Of interest is to investigate how ,_ _ : _ :
basin sizes change when moving between dissipative a een stability regions. Numbers label blfurcathn Iocull marks the
conservative limits. As is known, while conservative systems4_’1 Eadgle;-ziofg_ftnfurcgnog, 2 gtﬂrksf theﬂZh b|furcat|ono\llvlh|le
are plagued by chaos for quite large sets of initial conditions marks the tfurcation.U andL refer to the upper and lower
the dissipative limit with about the same complexity displays

FIG. 1. (Color online Top: Schematic view of boundaries be-

branches of theigenvalue patlisee text The dashed rectangular
box is shown magnified in the lower part of the figure. Bottom:
Phase diagram showing the intricate alternation of stability domains
underlyingL branch of the eigenvalue paH{a,b). Different shad-
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ings denote different periods. Encircled numbers indicate the peri-
odicity of the underlying domain. White represents chaos. The basin
of unbounded attractors is indicated by.—
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2=0.9125, b=0.9
(a)t

certain fractal fingers that appear in phase space.

Figure 1 illustrates the complex alternation of stability
islands seen in a particularly crowded region of parameter
space where we want to investigate basin size evolution. It
was generated as described in R&f/] and concentrates on
the physically meaningful strip ~<£b=<1. The wide white
domain located roughly along the “main diagonal” of the
figure represents parameters leading to stable chaotic solu-
tions. The different shading&onalities embedded in the
white background represent stability islands of periodic at-
tractors, different shadings denoting different periodicity.
The large region on the upper right corner signals parameters
leading mainly to unbounded solutions, i.e., to the attractor
located at infinity(divergence

Basin size evolution is studied along the parameter paths
delimiting stability regions for trajectories of periods 1, 2,
and 4. Such boundaries are the roots of the expressions

3 x 3
a=1.042, b=0.16

U(a,b)za+%(1—b)2:o, (1)

2 A D(a,b)za—§(b2—2b+1)=0, (2)
-3 X 3 4

FIG. 2. (Color onling lllustrative basins computed for four dif- 1 _,
ferent set of parameters along thes2 bifurcation line, defined by Qa,b)=a- Z(Sb —6b+5)=0. 3
Eqg. (3): (& (a,b)=(0.9125,0.9; (b) (1.042, 0.16; (c) (2.05, -0.4;
(d) (3.25, —0.8. The gray shading indicates the basin of,-black = The aforementioned eigenvalue path contains an upper

gives the basin of the periodic motion. branchU and a lower branch., which may be easily ob-
tained by solvinge(a,b)=0, where[27]
Although questions related with basin volumes are of an E(a,b) = 4ab? - [(b+ 1)* - b?](b - 1) (4)

elementary nature, their answers are nevertheless quite hard
to come by: lacking adequate theoretical means to even es- For Egs.(1)—(4), we determined the volume of basins of
timate the answers, one needs to resort to intensive numegitraction for a total ofN=2000 parameter value®,
cal computations, which we do here. =(as,by), €=1,2,...,N equally distributed along the bifur-
The exact description of the dynamics of a system whichcation curves and located inside the strips=fi=<1. Figure 2
suffers a transition from conservative into dissipative is alscsshows typical basin shape and volume for representative pa-
very important in other contexts like, for example, energyrameters along the -2 4 bifurcation locus. As seen, basins
transfer dynamics in system plus environment mod&®, are quite small near the conservative litnit 1 and the limit
irreversibility in complex systems, charge and energy transb=-1. The figure also shows that basins may be fractal for
fer in quantum molecular systerfi20], and even in describ- certain parameters. The pair of black basins in Fig¢ls) 2nd
ing dissipation in quantum mechani&il]. Presently, the key 2(c) are computed for the parameters indicated by black dots
motivation for investigating basin evolution is the need forin the lower part of Fig. 1. As evident from Figs(a2 and
uncovering flexible and realistic maps to be used as discret®(d), basins are already quite small fo=-0.8 andb=0.9
oscillators ruling local dynamics in lattices typically used in although one is still far from the limit|=1. Basin volumes
practical applications such as, for example, in simulations ofre maximal neab=0.
aspects of ocean convectip22,23, particularly those con- For each set of parametel’s we determined histograms
nected with complex lattice topology and evoluti@#—26. of the periodicities observed in phase-space inside the win-
Most of the time, parameter changes produce only minodow —-2.5<x<2.5 and -1k y=<11, discretized with a reso-
modifications in the dynamical behavior. But while moving lution of 100X 100 points. This window contains the largest
between dissipative and conservative limits one eventuallyportion of “useful” initial conditions, namely those not in the
crosses parameter paths like, for instance, stability or bifurbasin of infinity.
cation loci, that are particularly interesting in several respects Figure 3a) displays the fraction of the fQnitial condi-
[17]. Here we concentrate on properties measured along tions that do not diverge while moving frolm=-1 tob=1
few of the simplest paths which are very convenient becausalong three lines: the saddle-node-Q line (indicated by 1
they are all known analytically: the lines delimiting the and the 1-2 and 2—4 bifurcation lines. As seen, the vol-
boundaries of stability domains for low period oscillations ume increases with the unfolding of the bifurcation cascade.
and a very peculiaeigenvalue patf27] along which one Furthermore, independently of the period, the volume tends
may recover the dissipation rate by measuring the scaling db zero neab=-1 andb=1, the conservativéHamiltonian
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8000 @ TABLE I. Basin size variation relative to the basin ofo-The
6000'_ 3 ] interval corresponding to_period 36 is very narrow. _The first mem-
vol 2 ] ber 01_‘ the 1x 2" cascade lies outside the parameter interval consid-
4000 | ered in the table.
2000~ i . Attracton(s) b interval a interval %
ok T ' 2,4,..,64 [-0.26298,-0.24060 [1.30261, 1.82574 35
Chaos [-0.24059,-0.24012 [1.82601, 1.8387B 35
B000 T T 12,24  [-0.24011,-0.24007 [1.83906, 1.8401p 34
so000L ] 36 -0.24005 1.84069 345
vol ] Chaos  [-0.24004,-0.23978 [1.84097, 1.8480F 35
4000~ 7] 6,12,...,48 [-0.23977,-0.23946 [1.84835, 1.856856 35
20001 ] Chaos  [-0.23945,-0.23918 [1.85713, 1.86457 34
- 10 [-0.23917,-0.23915 [1.86485, 1.8651p 34
03 03 QIR i Chaos  [-0.23913,-0.23643 [1.86595, 1.94198 34
7,14,28 [-0.23642,-0.23640 [1.94227, 1.94284 32
FIG. 3. (a) Basin volume for the three lowest periods of the 1 Chaos [-0.23639,-0.23349 [1.94313, 2.0281 33

X 2" cascade, as a function of the dissipatiprib) Overlap of five
curves, showing basin volume as a function of the dissipdtitor

periods 8, 16, 32, 64, 128, and 256. The five curves overlap almodh the basin of <. As seen, even though there is a large
identically. The only noticeable differences involve intervals wherevariation of dynamical behaviors in this region, basin sizes
multistability is present, e.g., the period-3 window indicated by 3. remain essentially constant as before.

From Fig. 3 one sees that the basin volume decreases fast

limit, attaining its maximum value fob=0, the limit where
the map is noninvertiblgnondiffeomorphig. Figure 3a)

as|b|— 1. To characterize this decrease we attempted fitting
both a Gaussian and a log-normal to the volume distribution

also shows a few abrupt discontinuities, which simply indi-as a function of theb. However, since no significant im-

cate regions where there is multistabil[ty]. Of course, no

provement was found when using log normals, we only

discontinuities exist when all coexisting periods are addedpresent here, in Fig. 4, the standard deviationsbtained

We computed histograms using different discretizations angévhen fitting Gaussians to basin volumes for motions with
believe Fig. 8a) to be accurate and representative. Figureperiods 1, 2, 4, 8, 16, 32, 64, 128, 256, and chaos. The point
3(b) displays the overlap of five curves, showing basin vol-at the right of the dotted line in the figure indicates a rough

ume as a function of the dissipatidnfor periods 8, 16, 32,

estimate of the standard deviation of the basin volume at the

64, 128, and 256. The five curves overlap almost identicallyend of the periodic motions of thex|2" cascade. The esti-
Small differences appear only in intervals where multistabil-mation of basin volumes at this extreme situation is much

ity is present.

less certain than for periodic points. As is clear from Fig. 4,

One discovers a number of interesting features when conthe standard deviation does not converge to any limit value,
puting histograms along the bran¢h of eigenvalue path a fact that seems to agree well with repd28] concerning

E(a,b)=0. For instance, we have been able to numericallythe basin size shrinkage factor with the period of the periodic
follow basin evolution for the X 2" cascade during 6 bifur- attractors in connection with the unstable eigenvalue of the
cations(up to period 96 During this rather long unfolding, periodic orbit.
the basin size remains essentially constant, reproducing the The Gaussian profiles reported here do not seem to be
behavior described above for thex®" cascadgsee Fig. “universal.” Exponentials were fourld 6] for the basin size
3(b)]. The volume of the coexisting period-2 basin also re-evolution for the Hénon map along a path in the parameter
mains essentially constant in this interval of parameters. Thispace where the strange attraaappearg17,18§. In con-
shows that while intervals of stability in parameter spacerast, here the parameter path is the boundary where the cha-
suffer strong compression as the bifurcation unfolds, basimtic attractor is born. In addition, we offer an explanation for
volumes remain essentially unchanged. In other words, than interesting question posed by Feueteal. [16], concern-
immense difficulty to locate stable motions of high periodic-ing how rare are chaotic basins in presence of multistability.
ity is linked only to the narrowness of parameter intervals,Our figures show that not only are basins of chaotic attrac-
not to a decrease of basin volume. tors rare, but also rare are all basins related to periodic orbits.
A number of additional cascades are crossed when movFhis property is not due to the multistability of the dynami-
ing alongL up to b=-0.262 99, for instance those starting cal system, but arises from tlepen dynamicexistent in the
with periods 9, 15, 21, 27, 33, 45, 63, 75, and 105. All theseconservative limit of the Hénon map. In the Hamiltonian
periodic cascades are separated by intervals where chaos plieit, there is no bounded motion: all orbits go to infinity and
vails. Beyondb=-0.262 99 one finds a sequence of attrac-therefore basin sizes of all periodic or chaotic attractors sim-
tors as summarized in Table | where, to save space, a feply do not exist anymore. In the dissipative limit most of
very small windows were omitted in some specific intervals.these points remaifdue dissipationconfined to a finite re-
The last column in Table | gives the percentage of points nogion of the phase space.
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In summary, basin sizes remain essentially constant as 03— T ' '
bifurcation cascades unfold, when the dissipation rate does T NS T I
not vary too much. On the other hand, there is a drastic drop 0.28— - 7
in volume as one moves from the dissipative to the conser- © 1

vative (Hamiltonian limit. As the conservative limit is ap- 0.26 - =
proached, Gaussian profiles are found along stability bound- - 1
aries between periodic orbits. Near the conservative limit, all 024 —L e 55 256
basin sizes vanish for systems which have no bounded mo- period

tions. These results are robust upon changes of the discreti-

zations involved in their derivation and are insensitive to the FIG. 4. The standard deviation of Gaussian fits to basin volume

rectangular domain of initial conditions used in phase-spac@S @ function of basin periodicity. See text. The rightmost point

to compute them. Knowledge of basin volume evolution inrepresents a rough estimate at the end of the21 bifurcation

parameter space of a prototypical model map opens now tHg2scade.

possibility of investigating aspects of the onset of synchro-

nization and coherence in complex networks containing them .
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